论文部分内容阅读
Fengyun-4A(FY-4A), the first of the Chinese next-generation geostationary meteorological satellites, launched in2016, offers several advances over the FY-2: more spectral bands, faster imaging, and infrared hyperspectral measurements. To support the major objective of developing the prototypes of FY-4 science algorithms, two science product algorithm testbeds for imagers and sounders have been developed by the scientists in the FY-4 Algorithm Working Group(AWG). Both testbeds, written in FORTRAN and C programming languages for Linux or UNIX systems, have been tested successfully by using Intel/g compilers. Some important FY-4 science products, including cloud mask, cloud properties, and temperature profiles, have been retrieved successfully through using a proxy imager, Himawari-8/Advanced Himawari Imager(AHI), and sounder data, obtained from the Atmospheric Infra Red Sounder, thus demonstrating their robustness. In addition, in early 2016, the FY-4 AWG was developed based on the imager testbed—a near real-time processing system for Himawari-8/AHI data for use by Chinese weather forecasters.Consequently, robust and flexible science product algorithm testbeds have provided essential and productive tools for popularizing FY-4 data and developing substantial improvements in FY-4 products.
Fengyun-4A (FY-4A), the first of the Chinese next-generation geostationary meteorological satellites, launched in 2016, offers several advances over the FY-2: more spectral bands, faster imaging, and infrared hyperspectral measurements. of developing the prototypes of FY-4 science algorithms, two science product algorithm testbeds for imagers and sounders have been developed by the scientists in the FY-4 Algorithm Working Group (AWG). Both testbeds, written in FORTRAN and C programming languages for Linux Some important FY-4 science products, including cloud mask, cloud properties, and temperature profiles, have been successfully tested using by a proxy imager, Himawari-8 / Advanced Himawari Imager (AHI), and sounder data, obtained from the Atmospheric Infra Red Sounder, thus demonstrating their robustness. In addition, in early 2016, the FY-4 AWG was developed based on the image r testbed-a near real-time processing system for Himawari-8 / AHI data for use by Chinese weather forecasters. Reconstructed, robust and flexible science product product algorithm testbeds have provided essential and productive tools for popularizing FY-4 data and developing substantial improvements in FY-4 products.