论文部分内容阅读
对于广义鞍点问题,基于参数化的Uzawa方法提出了一种新的预处理子,通过分析预处理后的系统,发现当参数t→0时,其特征值将集中到0和1,因此,当在Krylov子空间中使用某些GMRES迭代方法时,它将保证较好的收敛性.最后,运用Navier-Stokes方程中的一些例子进行实验,验证了这个预处理子的实际效果.