论文部分内容阅读
In this article, the aptitude of natural gas as feedstock in steam reforming process for hydrogen production is compared with that of different liquid fuels (pure compounds and commercial fuels), with the aim to investigate the potentialities of biofuels to overcome the CO2 emission problems deriving from fossil fuel processing. The performances of a nickel based catalyst (commercially used in steam reforming of natural gas) were evaluated in terms of feed conversion and yield to the different products as function of temperature, space velocity and water/fuel ratio. Furthermore, a preliminary evaluation of catalyst durability was effected by monitoring yield to H2 versus time on stream and measuring coke formation at the end of experimental tests. High yields to hydrogen were obtained with all fuels investigated, whereas the deactivation phenomena, which are correlated to carbon deposition on the catalyst, were observed with all tested fuels, except for methane and biofuel.
In this article, the aptitude of natural gas as feedstock in steam reforming process for hydrogen production is compared with that of different liquid fuels (pure compounds and commercial fuels), with the aim to investigate the potentialities of biofuels to overcome the CO2 emission problems deriving from fossil fuel processing. The performances of a nickel based catalyst (commercially used in steam reforming of natural gas) were evaluated in terms of feed conversion and yield to the different products as function of temperature, space velocity and water / fuel ratio. a preliminary evaluation of the catalyst durability was effected by monitoring yield to H2 versus time on stream and measuring coke formation at the end of experimental tests. High yields to hydrogen were obtained with all fuels investigated, but the deactivation phenomena, which are correlated to carbon deposition on the catalyst, were observed with all tested fuels, except for methane and biofuel.