基于SAE-RF的三维UWB室内定位方法研究

来源 :传感器与微系统 | 被引量 : 0次 | 上传用户:ghj1983
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
由于室内环境复杂多变,存在着严重的非视距(NLOS)和多径效应,利用传统的指纹定位技术会造成较大的定位误差。针对此问题,利用超宽带(UWB)信号测距信息准确、波动小的特点,将测距值作为指纹量,提出一种基于稀疏自编码器(SAE)与随机森林(RF)相结合的三维室内定位方法。利用SAE提取出更具鲁棒性的特征值,将此特征值作为深度神经网络(DNN)回归网络的输入,得到目标点的估计定位坐标。针对环境变化导致的旧数据库无法匹配新采集指纹量的问题,利用测距值作为RF回归模型的输入对估计定位坐标进行定位误差修正。实验结果
其他文献
针对热释电红外(PIR)传感器在室内人体定位及识别上的准确率问题,设计了一种人体红外信号感知模型,提出了一种定位与识别的新型方法。模型节点采用一对正交的PIR传感器,结合对菲涅尔透镜的视场角调制,能够有效探测水平与垂直方向的人体红外信号。通过对这一对PIR传感器时域输出信号的采集分析,采用时域信号的峰值时间序列特征并融合两只传感器数据的相关性分析,使用机器学习SoftMax分类方法进行位置及速度等级的分类。实验结果表明:所设计方法在位置与速度等级分类上实现94.79%的准确率,在室内场景智能感知上具有较好
为解决室内环境中移动机器人使用单一传感器定位精度低和稳定性差的问题,提出了一种融合了轮式里程计、惯性测量单元(IMU)、超宽带(UWB)和激光雷达定位数据的多传感器融合定位方法。基于扩展卡尔曼滤波(EKF)算法和自适应蒙特—卡罗定位(AMCL)算法,依次对不同传感器定位数据进行融合。实验结果表明:多传感器融合有助于室内移动机器人获得更精确的定位和较好的定位稳定性。