Genetic architecture of embryo size and related traits in maize

来源 :作物学报(英文版) | 被引量 : 0次 | 上传用户:gsbyqjkwkw
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The embryo in maize has a critical role in controlling kernel nutrition components and grain yield. We measured five embryo weight and size traits, six kernel weight and size traits, and five embryo-to-kernel ratio traits in a nested association mapping (NAM) population of 611 recombinant inbred lines (RILs) derived from four inbred lines including the high-oil, giant-embryo line BY815 as the common par-ent. Using three statistical methods, we identified 5–22 quantitative trait loci (QTL) for each trait, explaining 4.7%–46.7% of the phenotypic variation. The genetic architecture of maize embryo size and its related traits appeared to be dominated by multiple small-effect loci with little epistasis, and the genetic control underlying embryo size appeared to be distinct from that underlying kernel size. A trait–QTL association network included 205 nodes and 439 edges and revealed 28 key loci associated with at least three traits. Cloned maize genes including ZmUrb2, Emp12 and ZmBAM1d, maize orthologs of known rice genes that control seed size including BG1, XIAO and GS9, and 11 maize orthologs of Arabidopsis EMBRYO-DEFECTIVE (EMB) genes were identified as underlying these key loci. Further, the phenotypic and genetic relationships between embryo size and kernel size were evaluated, and genetic patterns for identified loci that control embryo size and its related traits were proposed. Our findings reveal distinct genetic architectures for embryo size, kernel size, and embryo-to-kernel ratio traits and establish a foundation for the improvement of embryo-size-mediated kernel nutrition and grain yield.
其他文献
Tiller angle (TA) strongly influences plant architecture and grain yield in cereals. However, the genetic basis of TA in wheat is largely unknown. We identified three TA-related quantitative trait loci (QTL). One of them was QTa.sau-2B-769, a major QTL lo
The main defense response to Soybean mosaic virus (SMV) infection in soybean [Glycine max (L.) Merr.] is thought to be blockage of intercellular virus transport by callose deposition on plasmodesmata. But the specific regulatory mechanism remains largely
The Green Revolution gene sd1 has been used extensively in modern rice breeding, especially in indica cultivars. However, elite sd1 alleles and related germplasm resources used for japonica rice breeding have not been identified, and extensive efforts are
Oil and protein content and fatty acid composition are quality traits in peanut. Elucidating the genetic mechanisms underlying these traits may help researchers to obtain improved cultivars by molecular breeding. Whole-genome resequencing of a recombinant
Maize growth, organ development, and yield formation are highly controlled by the manner in which the plant captures, partition, and remobilizes biomass and phosphorus (P). Better understanding of biomass and P accumulation, partition, and remobilization
Soybean (Glycine max [L.] Merr.) is a food and oil crop whose growth and yield are influenced by root and nodule development. In the present study, GmNMHC5 was found to promote the formation of nodules in overexpressing mutants. In contrast, the number of
Yield loss (YLoss) in the ratoon crop due to crushing damage to left stubble from mechanical harvesting of the main crop is a constraint for wide adoption of mechanized rice ratooning technology. Soil drying before the harvest of the main crop has been pr
Soil inorganic phosphate (Pi) levels are frequently suboptimal for the growth and development of crop plants. Although MADS-box genes participate in diverse plant developmental processes, their involve-ment in phosphate starvation responses (PSRs) remains
为了明确烟后轮作不同品种玉米的适宜种植密度,2020年在湖南省浏阳市达浒镇金田村以湘农甜玉3号和郑单958为材料,设置5个密度水平,其中湘农甜玉3号的种植密度分别为42000(T1)、48000(T2)、54000(T3)、60000(T4)、66000(T5)株/hm2,郑单958的种植密度分别为45000(S1)、52500(S2)、60000(S3)、67500(S4)、75000(S5)株/hm2,比较分析不同密度处理下不同品种玉米的生长发育情况和产量.结果表明:不同密度处理下,2种玉米的生育期没
Salinity, a major abiotic stress, reduces plant growth and severely limits agricultural productivity. Plants regulate salt uptake via calcineurin B-like proteins (CBLs). Although extensive studies of the functions of CBLs in response to salt stress have b