论文部分内容阅读
为降低传统FCM算法的计算复杂性,提高Web用户聚类的效果,文中提出了一种改进的基于特征属性的Web用户模糊聚类算法。首先通过用户访问页面的次数和时间建立Web用户兴趣度矩阵,并根据商品的特征属性值将Web用户兴趣度矩阵映射为用户对特征属性的偏好矩阵,从而有效降低数据稀疏性;然后以此为数据集,对传统的FCM算法进行了改进,将聚类中心分为活动和稳定两种,忽略稳定聚类中的距离计算以降低计算复杂性。最后通过仿真实验证实了新算法的有效性和可行性。