论文部分内容阅读
提出基于超像素建立物体似然概率模型来检测图像的显著区域。首先根据显著性原理和物体的自然属性分析影响物体显著度大小的因素;然后使用SLIC算法把图像分成K个超像素,并根据纹理、颜色、梯度特征信息建立不同准则下显著物体概率的计算模型:包括类内紧凑性、颜色空间分布估计以及边缘连续性;再结合细胞调节和指数函数的特征对每个准则下的显著物体概率组合得到物体的似然概率;最后利用该算法在较复杂的场景中对显著区域进行提取实验,证明该算法比其他算法更高效。