论文部分内容阅读
摘要:
在对齿轮箱箱体进行加工的过程中,要注重箱体加工的精度,唯有较高的精度才能够保证产品最终装配精度。但是这种高精度需要工艺的保证,尤其针对制氧、高炉等使用的高速齿轮箱,对精度等级的要求更高,在本文中,笔者经过多年的技术经验,对相关的问题进行潜心研究,在先进数控加工设备的基础之上,对设备的精度进行调整,同时运用各种加工方式,对齿轮箱箱体进行加工。从而探索出一套适用于高精度齿轮箱箱体的工艺技术方案。
引言
任何的变速箱或部件都是由箱体及齿轮零件构成的,箱体是整个产品中基础的组成部分。这些箱体零件按照一定的相互关系,将各个部件中的轴承套、齿轮等零件组合成为一个有机的统一体,并使这些零件保持在正确的相对位置以使机器或部件能有机的、协调的运转。对齿轮箱箱体来说,其零件的精度会对齿轮箱的整体装配质量存在直接的影响,并对机器的整体使用性能造成负面影响。因此,我们要对齿轮箱箱体提出较高的技术要求和精度要求,提高齿轮箱的质量和使用性能。
1.箱体类零件的数控加工技术
1.1零件的结构及特点
组成齿轮箱的各个组件相对较为复杂,箱体的内壁薄厚不均衡,在需要的部位需要加筋板进行紧固,需进行加工的部分非常多,包括了箱体上下平面,轴承孔,油路,端面螺纹及止口加工等等。为保证箱体最终装配精度,这些部位的加工,需要精确保证精度及粗糙度。
1.2零件材料
用于铸造箱体的材料需要具备成本较低,具有耐磨性、可塑性以及阻尼等特性,普通齿轮箱箱体相对较多选择的是HT在200到400之间的灰铸铁。高级一些的也有使用球磨铸铁但是在特殊情况下,如果对精度有严格的要求的情形,那么可以选择耐磨铸铁或者也可以选择钢材焊接结构,经过高温退火去除结构件内部的应力,也是保证箱体稳定性的办法。
1.3零件的主要技术要求
进行齿轮箱箱体的数控高精度加工,必须严格的按照相关的技术要求操作。一旦技术参数没有达到标准,加工的齿轮箱体也是不合格的,在进行加工的时候需要注意的地方十分多。
相对于普通低速齿轮箱,在孔的尺寸大小、几何形状的大小和表面粗糙程度方面。一般而言,齿轮箱箱体的平行轴孔洞精度的达到为T6级,平行轴孔洞的表面粗糙的程度需要控制在Ra0.8-1.6um之内。对于几何形状精度的大小,则只需要控制在孔的公差范围之内即可。
对于平行轴孔洞孔距大小和位置关系方面。在加工的时候,齿轮箱体的各个支撑孔之间的距离以及位置关系也是需要考虑的方面。大体而言,中心距的距离大小必须在0.02-0.08mm之间,轴心线的平行度则是在0.03-0.1mm范围内。
1.4加工工艺
齿轮箱上下基准面及分合面方面而言,如果齿轮箱体的是比较小件的,那么一般都可以在牛头刨床以及普通的铣床上进行加工,反之则需要在龙门刨床以及龙门铣床上进行加工;对于箱体内直径小于50mm的孔,一般可以使用钻一扩一铰的方案,如果孔大于50mm,那么可以使用粗镗一半精镗一精镗的方案进行加工,在进行了精镗后,需要利用浮动的镗刀片进行再加工,这时一般是采用珩磨、滚压等工艺方法。
2.齿轮箱箱体加工试验
2.1齿轮箱子壳体加工概况
齿轮箱的壳体是高铁轨道(德国)中某段系列中的组成产品之一,在对齿轮箱的壳体进行加工作业时,主要提供的是2件齿轮箱的壳体毛坯。加工过程中,齿轮箱箱体要以各个孔问的中心点相互位置为基准,并要有较高的形位公差数,其中,在箱体的正端面与其反端面的内孔间,其同轴度◎≤φ0.02mm、∥≤φ0.02mm。
2.2调试加工后的主要情况
要对第一件齿轮箱的壳体工艺方案进行可行性分析,肯定其合理性、可行性。其次,对该齿轮箱壳体进行二次加工,扩大其主要的各个孔的大小,借助补偿孔中心坐标技术,以符合c-c剖视图的孔同轴度要求。接下来就对齿轮箱壳体各个孔的重新镗过程进行介绍。
第一,对A方向各个孔的尺寸进行半精镗加工,其半精镗范围从φ332至φ332.7、φ131至φ131.7、φ142至φ142.7;第二将机床180°旋转,以已经加工好的A孔中心为基准,将未加工的B方向的中心补偿至◎≤φ0.03-A;第三提高内孔精镗;第四要对c-c剖视图问的两孔同轴度进行观察,经测量发现其同轴度数据会发生变化。由此看出,我们若仅通過微调补偿中心对同轴度问题进行调整是不能达到原定目标的。
2.3调试加工的主要工艺
首先要把待加工的零件放至机床中心,将机床旋转180°后对A面进行半精加工,再旋转180°对B面进行半精加工,重复此操作并分别对A、B面进行精加工,完成后按第一次加工状态进行装夹。其次,按上述类似的方法,分别半精镗及精加工两面的内孔,再由精镗内孔到尺寸,改进为S150r/min和F20mm/min,将内孔的粗糙程度改进为Ra1.5um。最后要进行适当的切削工具选取,比如在进行深空加工时,要选用较低的进给速度,以25-55m/min范围内为佳。
2.4调试加工的检测报告
加工后对其进行检测发现,齿轮箱的正式壳体形位公差尺寸是符合整体设计要求的。
3.结语
齿轮箱体的数控加工是一项精细的工艺,不管是材料、结构还是加工程序、技艺都需要严格的按照要求进行,因此,从事于该行业的人员需要潜心攻坚,更好的进行加工以及创造出更先进的工艺以更好的促进该行业的发展。
在对齿轮箱箱体进行加工的过程中,要注重箱体加工的精度,唯有较高的精度才能够保证产品最终装配精度。但是这种高精度需要工艺的保证,尤其针对制氧、高炉等使用的高速齿轮箱,对精度等级的要求更高,在本文中,笔者经过多年的技术经验,对相关的问题进行潜心研究,在先进数控加工设备的基础之上,对设备的精度进行调整,同时运用各种加工方式,对齿轮箱箱体进行加工。从而探索出一套适用于高精度齿轮箱箱体的工艺技术方案。
引言
任何的变速箱或部件都是由箱体及齿轮零件构成的,箱体是整个产品中基础的组成部分。这些箱体零件按照一定的相互关系,将各个部件中的轴承套、齿轮等零件组合成为一个有机的统一体,并使这些零件保持在正确的相对位置以使机器或部件能有机的、协调的运转。对齿轮箱箱体来说,其零件的精度会对齿轮箱的整体装配质量存在直接的影响,并对机器的整体使用性能造成负面影响。因此,我们要对齿轮箱箱体提出较高的技术要求和精度要求,提高齿轮箱的质量和使用性能。
1.箱体类零件的数控加工技术
1.1零件的结构及特点
组成齿轮箱的各个组件相对较为复杂,箱体的内壁薄厚不均衡,在需要的部位需要加筋板进行紧固,需进行加工的部分非常多,包括了箱体上下平面,轴承孔,油路,端面螺纹及止口加工等等。为保证箱体最终装配精度,这些部位的加工,需要精确保证精度及粗糙度。
1.2零件材料
用于铸造箱体的材料需要具备成本较低,具有耐磨性、可塑性以及阻尼等特性,普通齿轮箱箱体相对较多选择的是HT在200到400之间的灰铸铁。高级一些的也有使用球磨铸铁但是在特殊情况下,如果对精度有严格的要求的情形,那么可以选择耐磨铸铁或者也可以选择钢材焊接结构,经过高温退火去除结构件内部的应力,也是保证箱体稳定性的办法。
1.3零件的主要技术要求
进行齿轮箱箱体的数控高精度加工,必须严格的按照相关的技术要求操作。一旦技术参数没有达到标准,加工的齿轮箱体也是不合格的,在进行加工的时候需要注意的地方十分多。
相对于普通低速齿轮箱,在孔的尺寸大小、几何形状的大小和表面粗糙程度方面。一般而言,齿轮箱箱体的平行轴孔洞精度的达到为T6级,平行轴孔洞的表面粗糙的程度需要控制在Ra0.8-1.6um之内。对于几何形状精度的大小,则只需要控制在孔的公差范围之内即可。
对于平行轴孔洞孔距大小和位置关系方面。在加工的时候,齿轮箱体的各个支撑孔之间的距离以及位置关系也是需要考虑的方面。大体而言,中心距的距离大小必须在0.02-0.08mm之间,轴心线的平行度则是在0.03-0.1mm范围内。
1.4加工工艺
齿轮箱上下基准面及分合面方面而言,如果齿轮箱体的是比较小件的,那么一般都可以在牛头刨床以及普通的铣床上进行加工,反之则需要在龙门刨床以及龙门铣床上进行加工;对于箱体内直径小于50mm的孔,一般可以使用钻一扩一铰的方案,如果孔大于50mm,那么可以使用粗镗一半精镗一精镗的方案进行加工,在进行了精镗后,需要利用浮动的镗刀片进行再加工,这时一般是采用珩磨、滚压等工艺方法。
2.齿轮箱箱体加工试验
2.1齿轮箱子壳体加工概况
齿轮箱的壳体是高铁轨道(德国)中某段系列中的组成产品之一,在对齿轮箱的壳体进行加工作业时,主要提供的是2件齿轮箱的壳体毛坯。加工过程中,齿轮箱箱体要以各个孔问的中心点相互位置为基准,并要有较高的形位公差数,其中,在箱体的正端面与其反端面的内孔间,其同轴度◎≤φ0.02mm、∥≤φ0.02mm。
2.2调试加工后的主要情况
要对第一件齿轮箱的壳体工艺方案进行可行性分析,肯定其合理性、可行性。其次,对该齿轮箱壳体进行二次加工,扩大其主要的各个孔的大小,借助补偿孔中心坐标技术,以符合c-c剖视图的孔同轴度要求。接下来就对齿轮箱壳体各个孔的重新镗过程进行介绍。
第一,对A方向各个孔的尺寸进行半精镗加工,其半精镗范围从φ332至φ332.7、φ131至φ131.7、φ142至φ142.7;第二将机床180°旋转,以已经加工好的A孔中心为基准,将未加工的B方向的中心补偿至◎≤φ0.03-A;第三提高内孔精镗;第四要对c-c剖视图问的两孔同轴度进行观察,经测量发现其同轴度数据会发生变化。由此看出,我们若仅通過微调补偿中心对同轴度问题进行调整是不能达到原定目标的。
2.3调试加工的主要工艺
首先要把待加工的零件放至机床中心,将机床旋转180°后对A面进行半精加工,再旋转180°对B面进行半精加工,重复此操作并分别对A、B面进行精加工,完成后按第一次加工状态进行装夹。其次,按上述类似的方法,分别半精镗及精加工两面的内孔,再由精镗内孔到尺寸,改进为S150r/min和F20mm/min,将内孔的粗糙程度改进为Ra1.5um。最后要进行适当的切削工具选取,比如在进行深空加工时,要选用较低的进给速度,以25-55m/min范围内为佳。
2.4调试加工的检测报告
加工后对其进行检测发现,齿轮箱的正式壳体形位公差尺寸是符合整体设计要求的。
3.结语
齿轮箱体的数控加工是一项精细的工艺,不管是材料、结构还是加工程序、技艺都需要严格的按照要求进行,因此,从事于该行业的人员需要潜心攻坚,更好的进行加工以及创造出更先进的工艺以更好的促进该行业的发展。