论文部分内容阅读
基于高斯混合模型(Gaussian Mixture Model,GMM)间差别的方法是进行说话人聚类的常用的一类方法。该文提出两种新颖的GMM差别度量,“类散度”和GMM的相互概率。“类散度”即模型间“离散度”与模型内“离散度”之比,在计算中综合考虑了GMM各个胞腔的权值、均值及方差的影响。全面地反映了高斯混合模型参数的差别。GMM的相互概率即其中一个GMM的参数在另一个GMM下的概率。实验证明,两种方法均能很好地描述GMM间的差别,在说话人聚类实验中表现良好。