论文部分内容阅读
提出一种基于优化最小二乘支持向量机的光伏功率预测方法。该方法采用最小二乘支持向量机(LS-SVM)分别构建春、夏、秋、冬四个预测模型,对光伏功率进行分钟级预测。选取了一组影响光伏功率的重要因素作为所建预测模型的输入特征,然后对所选特征和交叉验证预测误差之间的函数映射关系进行学习,并采用粒子群算法优化LS-SVM模型的参数。宁夏某光伏发电站实测数据的预测结果验证了该方法的有效性。