论文部分内容阅读
目的为了使构造的曲线拥有传统Bézier曲线的良好性质,同时还具备形状可调性、逼近性、保形性以及实用性。方法首先在拟扩展切比雪夫空间的框架下,构造了一类具有全正性的拟三次三角Bernstein基函数,并给出了该基函数的性质;基于此基函数,构造了相应的拟三次三角Bézier曲线,分析了其曲线的性质,得到了生成曲线的割角算法以及C1,C2光滑拼接条件,同时还提出了一种估计曲线逼近控制多边形程度的三角Bernstein算子;接着在拟三次三角Bernstein基函数的基础上提出一种三角域上带3个指数参数的拟