论文部分内容阅读
支持向量机(SVM)是在统计学习理论基础上发展起来的一种新的模式识别方法,SVM的基本思想是通过非线性变换将输入空间变换到一个高维空间,然后在这个新的空间中求取最优分类超平面。它在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。本文着重介绍选取SVM及其如何成功诊断处理钢厂轧机X射线测厚仪CS值电压自动漂移等故障的实例,实践理论与应用并重。