论文部分内容阅读
针对基于SIFT、ORB等传统手工特征无法满足变化环境下的位置识别要求,提出了一种基于深度卷积神经网络(CNN)与词袋模型(BoW)的位置识别方法(BCF)。首先,对数据集中图像进行CNN特征提取,通过K均值聚类构造特征词典并对CNN特征进行编码,生成BCF特征。同时建立局部CNN特征到特征词汇的特征映射图。查询时,首先通过查询图像的全局BCF特征在数据库中进行检索返回初步排名结果;然后对查询图像和候选图像提取一定数量的局部区域,通过局部区域匹配对候选集进行重排名。实验结果表明,该方法无须针对特定任