论文部分内容阅读
蝙蝠算法是一种新兴的元启发式算法,基本蝙蝠算法(BA)存在寻优精度低、易陷入局部最优等缺点。将椋鸟群的集体性行为引入到基本蝙蝠算法中,有效地提高了算法的搜索范围;引入线性递减权重,用于平衡全局搜索和局部搜索。通过一些测试函数对该算法进行仿真研究,结果表明改进的蝙蝠算法有效地避免了种群个体陷入局部最优,提高了算法的寻优精度,优化效果得到改善。