论文部分内容阅读
在大规模基因表达谱的数据分析中引入了一种全新的基于贝叶斯模型的聚类算法,从生物学背景出发,研究了该算法应用在大规模基因表达谱中的理论基础和算法优越性,并应用该算法对两个公共的基因表达数据集进行了知识再挖掘。结果表明,与其他聚类算法相比,该算法在知识发现方面具有显著的优越性。挖掘出的生物学知识对该领域研究人员的实验设计也有一定的启发性。