论文部分内容阅读
In Shougang Jingtang 5 500m 3 huge blast furnace ( BF ) design , dome combustion hot blast stove ( DCHBS ) technology is developed.DCHBS process is optimized and integrated , and reasonable hot blast stove ( HBS ) technical parameters are determined.Mathematic model is established and adopted by computational fluid dynamics ( CFD ) .The transmission theory is studied for hot blast stove combustion and gas flow , and distribution results of HBS velocity field , CO density field and temperature field are achieved.Physical test model and hot trail unit are established , and the numeral calculation result is verified through test and investigation.3-D simulation design is adopted.HBS process flow and process layout are optimized and designed.Combustion air two-stage high temperature preheating technology is designed and developed.Two sets of small size DCHBSs are adopted to preheat the combustion air to 520-600℃.With the precondition of BF gas combustion , the hot blast stove dome temperature can exceed 1 420 ℃. According to DCHBS technical features , reasonable refractory structure is designed.Effective technical measures are adopted to prevent hot blast stove shell intercrystalline stress corrosion.Hot blast stove hot pipe and lining system are optimized and designed.After blowing in , the blast temperature keeps increasing , and the monthly average blast temperature reaches 1 300℃ when burning single BF gas.
In Shougang Jingtang 5 500m 3 huge blast furnace (BF) design, dome combustion hot blast stove (DCHBS) technology is developed. DCHBS process is optimized and integrated, and reasonable hot blast stove (HBS) technical parameters are determined. Mathematic model is established and adopted by computational fluid dynamics (CFD). The transmission theory is studied for hot blast stove combustion and gas flow, and distribution results of HBS velocity field, CO density field and temperature field are achieved. Physical test model and hot trail unit are established , and the numeral calculation result is verified through test and investigation. 3-D simulation design is adopted. HBS process flow and process layout are optimized and designed. Combustion air two-stage high temperature preheating technology is designed and developed. Two sets of small size DCHBSs are adopted to preheat the combustion air to 520-600 ° C.With the precondition of BF gas combustion, the hot blast stove dome temper ature can exceed 1 420 ° C. According to DCHBS technical features, reasonable refractory structure is designed. Effective technical measures are prepared to prevent hot blast stove shell intercrystalline stress corrosion. Hot blast stove hot pipe and lining system are optimized and designed. After blowing in , the blast temperature keeps increasing, and the monthly average blast temperature reaches 1 300 ° C when burning single BF gas.