基于Kubernetes云原生的弹性伸缩研究

来源 :计算机与现代化 | 被引量 : 0次 | 上传用户:netfate
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着云技术的不断发展和普及,为了更好地利用云平台的优点和特性,云原生应用服务不断涌现,如何利用云平台的特性来服务软件设计和开发成为了难题,例如如何利用云平台的弹性伸缩特性.云原生目前主流的容器编排技术Ku-bernetes支持自动伸缩,却存在一些需要针对具体情况进行优化改进的问题.本文主要针对使用Kubernetes编排的5G核心网网元PCF(Policy Control Function)的水平自动伸缩进行研究,通过基于自定义的负载数据(CPU使用率、内存使用率、交易量、带宽使用率)统计,根据历史负载数据使用LSTM来预测未来的负载,并设计了一种基于预测负载的可行的弹性伸缩算法,从而提出一种提前感知的、弹性的、不影响业务的弹性伸缩方法,并进行了大量的实验和统计,来论证方法的可行性和正确性.
其他文献
针对传统的超声血流向量成像(VFM)技术需要专有软件来获取原始多普勒和散斑跟踪数据的限制,提出一种联合深度学习的通用VFM方法.首先,使用速度标尺获取彩色多普勒超声心动图提供的沿声束方向的速度作为径向速度分量;然后,使用U-Net模型自动识别左心室壁轮廓,通过重新训练的PWC-Net模型计算左心室壁速度作为连续性方程的边界条件,并通过求解连续性方程获取各血液质点垂直于声束方向的速度分量(即切向速度分量);最后,合成心脏流场速度矢量图,并实现心脏流场流线图的可视化.实验结果表明,所提方法得到的心脏流场速度矢
脉象识别是中医诊断的重要手段之一.长期以来,依据个人经验进行的脉诊制约了中医的推广与发展.因此,利用传感设备进行脉象识别的研究正在逐步展开.针对神经网络识别脉象的相关研究中,存在需要大量训练数据集,以及存在处理“黑箱”和时间花销较大等问题,在强化学习的框架下,提出了一种采用马尔可夫决策和蒙特卡罗搜索的脉象图分析法.首先依据中医理论对特定的脉象进行路径分类,然后在此基础上为不同的路径选择代表性特征,最终通过对代表性特征的阈值对比完成对脉象的识别.实验结果表明,所提方法可缩减训练时间和所需资源,并可保留完整的