论文部分内容阅读
A new type of bismuth silicate glass (Bi2O3-SiO2-ZnO-Al2O3-La2O3) doped with Tm2O3 is prepared by melt-quenching method. The thermal stability of the glass is examined by differential scanning calorimetry. No crystallization peak is found. Using the absorption and emission spectra, the absorption and emission cross-sections are calculated. Their maximum data are 2.9×10-21 cm2 at 1 663 nm and 4.7×10-21 cm2 at 1 826 nm, respectively. Using the Judd-Ofelt theory, the radiation transition probabilities and radiative lifetimes are obtained. The extended overlap integral method is applied to analyze energy transfer process among the Tm3 ions. The transfer constants of cross-relaxation and energy migration among the Tm3 ions at the 3H4 level are 7.60×10-40 and 14.98×10-40 cm6/s, respectively. The critical transfer radius for cross-relaxation is 0.99 nm. The cross relaxation process is easy to realize and is favorable for obtaining ~2-\mu m laser.