Synthesis of mechanically robust porous carbon monoliths for CO2 adsorption and separation

来源 :能源化学 | 被引量 : 0次 | 上传用户:daiguangying
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Porous carbon materials with developed porosity,high surface area and good thermal-and chemical-resistance are advantageous for gas adsorption and separation.However,most carbon adsorbents are in powder form which exhibit high pressure drop when deployed in practical separation bed.While monolithic carbons have largely addressed the pulverization problem and preserved kinetics and usually suffer from abrasion during multiple adsorption-desorption cycles.Herein,we proposed the designed synthesis of mechanically robust carbon monoliths with hierarchical pores,solid nitrogen-containing framework.The synthesis started with the polymerization of resorcinol and formaldehyde under weakly acidic conditions generated from cyanuric acid,and then an appropriate amount of hexamethylenetetramine (HMTA) was added as a crosslinker to prompt the formation of three dimensional frameworks.After carbonization process,the as-obtained porous carbon monoliths have a high radial compressive strength of 886 N/cm as well as a BET specific surface area of up to 683 m2/g.At approximately 1 bar,the CO2 equilibrium capacities of the monoliths are in the range of 3.1-4.0 mmol/g at 273 K and of 2.3-3.0 mmol/g at 298 K,exhibiting high selectivity for the capture of CO2 over N2 from a stream which consists of 16.7% (v%) CO2 in N2.Meanwhile,they undergo a facile CO2 release in an argon stream at 298 K,indicating a good regeneration capacity.After cycle testing,sieving and regeneration,the adsorbent has no mass loss,compared to that of its fresh counterpart.
其他文献
Hydrogen evolution reaction (HER) is a prospective method to generate pure hydrogen. The develop-ment of superior electrocatalysts based on earth-abundant materials, plays a critical role in the future. CoSe2 , one of the earth-abundant electrocatalysts,
The earth-abundant transition metal based nanomaterials are regarded as state-of-the-art oxygen evolution reaction (OER) electrocatalyst.Recent studies have shown that amorphous materials are more active than their crystalline forms.Herein,we demonstrate
In dual-ion batteries (DIBs),energy storage is achieved by intercalation/de-intercalation of both cations and anions.Due to the mismatch between ion diameter and layer space of active materials,however,volume expansion and exfoliation always occur for ele
Transition metal chalcogenides have nowadays garnered burgeoning interest owing to their fascinating electronic and catalytic properties,thus possessing great implications for energy conversion and storage applications.In this regard,their controllable sy
Lithium metal has been considered to be the most promising anode material for the new generation of energy-storage system.However,challenges still stand in protecting lithium metal from spontaneous reactions with electrolytes and preventing the dendritic
Ti-bearing slag (TiO2 >20 wt%) is a valuable titanium secondary resource.The extraction of titanium from the slag is difficult due to the complex composition and structure.Although molten oxide electrolysis is considered as a promising method,silicon will
This work presents an enhanced hydrometallurgical process for recycling lithium ion batteries.First,end-of-life batteries were processed in a physical pre-treatment plant to obtain a representative electrode material.The resulting leachate was purified fo
An optimized graphene/RuO2/S composite is prepared by hydrothermal growth of RuO2 particles on graphene oxide sheets as the positive electrode for rechargeable lithium-sulfur batteries.The electrode with 6.1 wt% RuO2 nanocrystals and a high sulfur content
Developing bifunctional catalysts that increase both the OER and ORR kinetics and transport reactants with high efficiency is desirable.Herein,micro-meso-macroporous FeCo-N-C-X (denoted as “M-FeCo-N-C-X”,X represents Fe/Co molar ratio in bimetallic zeolit
The directly selective hydrogenolysis of xylitol to ethylene glycol (EG) and 1,2-propylene glycol (1,2-PDO) was performed on Cu–Ni–ZrO2 catalysts prepared by a co-precipitation method. Upon optimizing the reaction conditions (518 K, 4.0 Mpa H 2 and 3 h),