论文部分内容阅读
随着Web所拥有的信息量和信息种类的急剧增长,Web站点挖掘对于自动实现特定主题的Web资源发现和分类具有重要的意义.然而现有的Web站点分类或挖掘算法在利用上下文语义信息、去除噪声信息以进一步提高分类准确率等方面还缺乏深入研究.从站点的采样尺寸、分析粒度和描述结构3个方面分析了设计高效的Web站点挖掘算法所需要解决的问题.在此基础上,提出了一种新的Web站点多粒度树描述模型,并描述了包括基于隐Markov树的两阶段分类算法、粒度间上下文融合算法、两阶段去噪程序以及基于熵的动态剪枝策略在内的多粒度Web站