基于丢包率预测的视频传输纠错算法

来源 :计算机应用研究 | 被引量 : 5次 | 上传用户:energ10
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为解决视频图像在互联网中进行传输时,其质量易受网络丢包率、时延等因素的影响而显著降低的问题,提出了一种基于丢包率预测的视频传输纠错算法。该算法采用隐马尔可夫模型预测网络丢包率,根据丢包率的大小自适应地选择FEC或ARQ对视频图像进行纠错操作。当预测出的丢包率较高时,为避免FEC算法在丢包率较高时降低带宽利用率,采用选择性ARQ算法恢复丢失的视频数据包,并通过限制其重传次数使视频传输的实时性得到了保证;当预测出的丢包率较低时,则采用优化了RS冗余值的FEC算法进行纠错操作。在OPNET modeler
其他文献
与传统三维激光扫描仪相比,Kinect作为一种新型深度相机,具有价格低廉、深度数据获取能力强、RGB影像与深度影像同步获取等优势,然而面对较大室内场景精细建模却存在数据量大、建模范围有限、对硬件环境依赖性强等问题。因此,在现有单一模型建模基础上,提出了基于Kinect深度影像的多模型数据融合方法,实现模型间的自动拼接。最后通过两组实验对提出的数据融合方法进行了验证,并取得了较好的模型拼接效果。
由于追求收敛速度与防止陷入局部最优,标准的改进强度Pareto算法(SPEA2)过于注重全局搜索能力,从而导致局部搜索能力不足。为了增强SPEA2算法的局部搜索性能,进而提高算法收敛速度,提出了一种基于局部搜索的改进SPEA2算法。该算法单独设置一个新外部存档集以保存局部搜索后的非支配集,并且改进了交叉算子,加入了部分个体更新策略。将该改进算法与SPEA2算法进行了收敛性能比较实验。仿真实验结果表
为解决P2P网络中Chord算法众多节点性能不一、节点频繁离开和加入制约系统性能的问题,提出了基于信息相关度的分组改进算法。该算法通过引入节点信息相关度的概念,对原Chord进行信息相关度的一个分组调整。从每个组选出两个超级节点组成超级组,同时为每个节点增加了逆时针路由,在两个超级节点顺逆两个方向上选择出最短路径进行查找。实验表明,改进后的算法使得系统的性能和适应性都得到了加强,提高了Chord在
特征选择是文本分类技术的一项关键技术,特征选择的质量决定了分类的性能。在分析现有特征选择方法的基础上,引入类词频概念,建立"文档—类—词"立方体。实验表明,这样的立方体模型能更全面、更客观刻画特征的本质,兼顾了特征的类内分散度更平均、类间集中度更集中。结合类词频选择的特征提高了文本分类能力。