论文部分内容阅读
光催化技术是一种绿色的化学技术,它可以利用取之不尽的太阳能来降解有毒污染物或者分解水产生氢气等.毋庸置疑,这项技术的核心是半导体光催化剂,在太阳光的照射下,半导体产生电子-空穴对,分别迁移至表面参与氧化还原反应.然而,半导体光催化剂中电子和空穴易快速复合以及其对太阳能中占主导的可见光利用率较低阻碍了其在实际中的应用.因此,解决这些问题,实现光催化技术的产业化应用,成为更多研究者关注的焦点.石墨相碳氮化物(g-C3N4)作为一种新型的聚合物半导体,因其来源丰富、合成简便、化学和物理性质稳定以及能带结构可调而吸引了研究人员的兴趣,但是它仍然存在上述问题.目前,提高g-C3N4光催化性能的方法大致有以下三种:改变形貌或进行元素掺杂以调节能带结构,与其他半导体复合构建异质结构来加速光生载流子的迁移,拓展可见光吸收范围.g-C3N4的光催化活性主要受自身骨架结构中的π电子传输影响,但π电子只能在波长<420 nm的高能量光下才能被激发.研究可知,设计N原子上孤对电子暴露于平面外部的氮化碳结构,在可见光激发下即可产生n-π*电子跃迁,获得显著增强的光吸收能力,从而提升光催化活性.然而,这些研究仅关注了g-C3N4中N原子上孤对电子形成的n-π*跃迁,并未研究外来材料杂原子上的孤对电子是否具有相似的作用.因此,利用合适的、含孤对电子的材料来修饰g-C3N4,也有可能获得类似的n-π*电子跃迁.本工作以含芳香环结构的噻吩基丙二酸(ThA)与尿素作为前驱体,通过热聚合方法合成了具有高效n-π*电子跃迁的CN-ThAx材料,并在可见光条件下,通过降解双酚A以及分解水实验测试其光催化性能.采用漫反射光谱(DRS)、光致发光光谱(PL)、理论计算、扫描电镜(SEM)、透射电镜(TEM)和X射线光电子能谱(XPS)等表征手段分析了催化剂的光学性质、微观形貌和结构特征.通过DRS、PL和理论计算分析可知,n-π*电子跃迁可提升CN-ThAx在450–550 nm区域的光学吸收,增强材料对可见光利用效率.SEM和TEM结果显示,ThA修饰并未改变g-C3N4的形貌,结合XPS结果可知,n-π*电子跃迁不是由g-C3N4中N原子的孤对电子引起的,而是由ThA中S元素的孤对电子引起的.光催化性能测试结果也表明,ThA修饰后的CN-ThAx在可见光下具有更优的光催化性能.因此,本研究为设计具有较高可见光利用率的氮化碳材料提供了新思路.“,”Expanding the optical absorption range of photocatalysts is still a key endeavor in graphitic carbon nitride (g-C3N4) studies. Here, we report on a novel thiophene group extending the optical property, which is assigned to n-π*electronic transitions involving the two lone pairs on sulfur (TLPS). The as-prepared samples, denoted as CN-ThAx (where x indicates the amount of ThA added, mg), showed an additional absorption above 500 nm as compared to pristine g-C3N4. Further, the thio-phene group enhanced charge carrier separation to suppress e?/h+pair recombination. The exper-imental results suggest that the thiophene group can obstruct the polymerization of melem to gen-erate a large plane, thus exposing the lone electron pairs on the sulfur. The photocatalytic activity was evaluated in the decomposition of bisphenol A and H2 evolution. Compared with g-C3N4, the optimized CN-ThA30 sample led to a 6.6-and 2-fold enhancement of the degradation and H2 genera-tion rates, respectively. The CN-ThA30 sample allowed for synchronous H2 production and BPA decomposition.