论文部分内容阅读
使用 Newton-Raphson 算法计算非线性电子电路的直流解所遇到的两个主要问题是造代不收敛和造代过程中的数值溢出。源步计算法在一定程度上解决了这些问题,然而它要求进行更多的迭代而使计算时间大大增加。本文提出计算非线性电子电路直流解的一种新算法——预估源步进法。在这种方法中,首先用三次多项式插值法预报初始猜测值,因此总的迭代次数减少。本文的算法是可靠的,与一般源步进法相比,具有更快的收敛速度。
The two major problems encountered when using the Newton-Raphson algorithm to calculate the DC solution of nonlinear electronic circuits are the unconventional generations and the numerical overflow during the generation. Source-based calculation solves these problems to a certain extent, however, it requires more iterations and greatly increases the computation time. In this paper, a new algorithm for calculating the DC solution of nonlinear electronic circuits is proposed, which is the source estimation step. In this method, the initial guess is first predicted by cubic polynomial interpolation, so the total number of iterations decreases. The algorithm in this paper is reliable, and has a faster convergence rate than the general source stepping method.