论文部分内容阅读
3.5 理论与试验的比较为使理论与试验对比,必须确定方程(1)和(4)中的所有常数。除了纵向水平方向的钢轨扣件弹性常数即弹簧刚度K之外,确定其余常数都很容易。正如2·1(b)节已提到的那样,K是沿轨道随机变化的,并与许多因素有关。于是可按第2节的理论,分别以若干K值计算出无缝线路的钢轨应力分布。若某K值使其得出的应力分布与试验最为接近,则该K值就作为试验平均值,见表1。三座试验桥上不同时间的无缝线路钢轨力的纵向分布如图11~13。相应用作理论与试验相比较的方程是(17)和(21)。
3.5 Comparison of theory and experiment To compare theory with experiment, all the constants in equations (1) and (4) must be determined. In addition to the elastic modulus of the rail fastener in the longitudinal direction, ie the spring rate K, it is easy to determine the remaining constants. As already mentioned in Section 2.1 (b), K varies randomly along the orbit and is related to many factors. So according to the second section of the theory, respectively, with a number of K values calculated seamless rail stress distribution. If a K value to the stress distribution obtained by the test and the closest, then the K value as a test average, shown in Table 1. The vertical distribution of the rail force of the CWR at different times on the three test bridges is shown in Figs. 11-13. The corresponding equations for comparison between theory and experiment are (17) and (21).