论文部分内容阅读
The increase of phosphorus concentration is a crucial factor causing the eutrophication of water body,while land use has an important impact on agricultural non-point sources (NPS) phosphorus discharge. Sevensites controlling the water in four sub-watersheds and the main exit of the Meicun Watershed of XuanchengCounty, Anhui Province, were investigated by dynamic monitoring of stream water and nutrient discharge,integrating interpretation of aerial image and GIS analysis to find out how the land use affects phosphorusloss with stream water in typical agriculture-forest watershed in subtropical China. These monitored sitesare different in structure of land use. Phosphorus concentration of the stream water was analyzed everyweek and at the next day of rainfall. The velocity of flow was measured by kinemometer to calculatethe runoff flux and phosphorus discharge. The results showed that the runoff flux and the discharges ofdissolved phosphorus (DP), particle-associated phosphorus (PAP) and total phosphorus (TP) had significantexponential relationships with the area percentages of forest, pond and paddy field. There existed a significantlinear relationship between the TP and PAP concentrations in stream water and the area percentages of forest,pond and paddy field, and the discharge of PAP was also significantly linearly correlated with the dischargeof suspended soil particles. There was a logarithmic linear relationship between DP and PAP discharges. Thestudy indicated that the adjustment of land use patterns and construction of ecologically sound landscapewould be an important measure to reduce the runoff discharge of phosphorus. The results would be veryuseful in building the best management practices (BMPs) of agricultural watershed in subtropics.