论文部分内容阅读
传统的混合像元分解一般是基于固定端元的,然而实际上影像中像元并非都由完全相同的端元组成。基于波谱库,将端元选取和丰度反演合为一个步骤,抽象成一个估计参数的随机过程,在端元数目可变的前提下,基于可逆的跳跃式MCMC方法估计参数,从波谱库中选取端元并对混合像元进行线性解混。在状态转移过程中,加入端元的累积知识,以提高算法效率。这种算法不需要人工干预,能够实现自动化像元分解,并且具有较高的精度。实验表明,基于修正MCMC的端元可变的自动化解混算法在分解精度和稳定性方面均优于基于固定端元的混合像元分解方法。