论文部分内容阅读
针对传统正负关联规则挖掘算法需要多次扫描数据库并且生成大量候选频繁项集的问题,在对比目前相关研究成果的基础上,提出了一种改进的正负关联规则挖掘算法,它通过两次数据扫描完成对正负关联规则的挖掘,对最大频繁项集的挖掘算法做了改进,有效提高了算法效率,同时对置信度标准做了改进。基于某真实事务集的实验表明,算法提高了规则挖掘的质量和有效性。