论文部分内容阅读
近年来,深度学习算法发展迅速,并广泛应用于目标检测的任务。然而,在内存和计算能力等条件受限制的设备上,无法进行实时性的目标检测。针对这一问题,提出了一种在内存和处理单元受限的监视系统中检测行人的快速方法。针对一般行人检测中提取高维度行人特征导致检测效率低的问题,将改进的方向梯度直方图(HOG)和Sobel边缘图像局部二元模式算法(Sobel-LBP)进行融合作为特征,提出基于教师-学生框架的模型压缩技术,将其应用于随机森林(RF)分类器,不使用深度网络,因为经过压缩的深度网络仍然需要大量的内存用于处