论文部分内容阅读
月地返回轨道设计是探月三期月球采样返回任务中的重要内容之一,其约束条件较地月转移轨道复杂。此外,微分修正算法对于初值有很强的敏感性,且不易搜索得到初值。本文提出选取月心段出口点的双曲线B平面参数作为第一次迭代的目标值,选取地心段约束值作为第二次迭代的目标值,可有效的减少迭代次数和迭代时间,完成搜索初值过程。针对直接返回型轨道和间接返回型轨道的设计问题,使用基于双曲线B平面参数的快速微分修正月地返回轨道精确设计方法,满足了对应的约束条件,易于求取变轨点的位置矢量和速度矢量,得到标称返回轨道。最后针对2种返回轨道类型的算例说明该方法有效。
The orbital return orbit design is one of the important contents in the lunar sampling return mission of the lunar exploration phase. Its constraint conditions are more complicated than those of the lunar transition. In addition, the differential correction algorithm is very sensitive to the initial value, and difficult to search for the initial value. In this paper, we choose the hyperbolic B-plane parameter of the exit point of the lunar segment as the target value of the first iteration and select the value of the central segment constraint as the target value of the second iteration, which can effectively reduce the number of iterations and the iteration time and complete the search Initial process. For the design of the direct return orbit and the indirect return orbit, the precise design method of the lunar return orbit based on hyperbolic B-plane parameters is used to satisfy the corresponding constraints and easy to find the position vector of the orbit Velocity vector to get the nominal return orbit. Finally, an example for two types of return orbits shows that the method is effective.