论文部分内容阅读
基于全排列组合训练优选的建模参数,建立了铸态Mg-APCa系合金的人工神经网络晶粒尺寸预测模型。对比传统试探法参数所建模型,该模型具有更高的平均相关系数和更低的平均误差,对检验数据的平均预测误差为6%。此外,通过模型预测了不同Al、Ca含量对Mg-Al-Ca系铸态合金晶粒尺寸的影响。结果表明,当A1含量在2.0%~3.0%、Ca含量在2.5%~3.5%时,可获得晶粒较小的Mg-Al-Ca系铸态合金,其尺寸约为150μm。预测结果和实验结果相吻合。