论文部分内容阅读
地址匹配中,由于传统相似度模型受字符重叠数影响大,在处理简写、缩写地址要素单元时,错误匹配问题突出;深度学习方法需要大量样本支撑,但庞大的数据量和多样的形式,导致生成样本的成本过高.为解决上述问题,本文首先应用基于条件随机场和双向长短时记忆神经网络的模型,对地址进行分词;然后通过建立一种伪语义相似度,对地址要素进行分级匹配.通过对公安业务中地址数据进行测试,在对缩写、简写等不规范地址描述方面,本文模型能较理想地完成任务,各参考指标均高于0.9.