论文部分内容阅读
为提高短期风电功率的预测精度并对功率预测的不确定性进行量化,提出了基于高斯过程回归(Gaussian Process Regression,GPR)和Bootstrap Aggregation(Bagging)的组合预测方法。针对GPR的不稳定性和计算量大的特点,引入了Bagging和训练数据完全条件独立下的近似方法(Fully Independent Training Conditional Approximation,FITC)。同时,在贝叶斯决策(Bayesian Committee Machine