正则化超分辨率重建过程的自适应阈值去噪

来源 :计算机应用 | 被引量 : 2次 | 上传用户:high
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了提高正则化超分辨率技术在噪声环境下的重建能力,对广义总变分(GTV)正则超分辨率重建进行了扩展研究,提出了一种自适应阈值去噪的方法。首先,根据GTV正则超分辨率重建算法进行迭代重建;然后,利用推导出的自适应阈值矩阵,对每次迭代产生的代价矩阵进行阈值划分,小于阈值的对应像素点继续迭代,大于阈值的对应像素点被截断后重新插值并不再参与本轮迭代;最后,程序达到收敛条件时输出重建结果。实验结果表明,通过与单一GTV正则重建和自适应参数的方法相比,自适应阈值去噪的方法提高了收敛速度和重建图像的质量,使正则化
其他文献
找到能减小类内距离、增大类间距离的特征表示方法是行人识别的一个挑战。提出一种基于行人验证和识别相融合的深度网络模型来解决这一问题。首先,识别监督学习网络模型增加
本文主要简述了熟料窑引风机在改造前控制方面的繁琐与落后,以及设备运行时的低效率和能源浪费的现状。论述了引入高压变频器控制的理论依据和改造方案,总结了实施改造后的运行