论文部分内容阅读
通过研究核密度估计理论,提出了一种适应估计金融时间序列分布的L ap lace核密度函数.在单变量核密度估计的基础上建立了风险价值(V a lua at R isk,简记为VaR)预测的预测模型.通过对核密度估计变异系数的加权处理建立了两种加权VaR预测模型.最后,通过上证指数收益率对建立的VaR预测模型进行了实证分析,结果显示两种加权方法对上证指数收益率的VaR预测具有较高的效率.