论文部分内容阅读
通过修改离差预测的方式,对高斯马尔可夫随机场(Gauss Markov Random Field)模型加以改进,提出层次型多光谱高斯马尔可夫随机场(Hierarchical Multispectral Gauss Markov RandomField,HMGMRF)模型及其相应的分割算法。影像分割时,先通过HMGMRF模型分析地物在各波段光谱特征的变化趋势(即地物各波段的纹理特征),期间结合了"谱间相关"这一特性,将离差预测时的邻域空间由原先的单层扩展为多层,增加了纹理特征的维度,从而提高了模型在描