论文部分内容阅读
为了更加有效地预测图像中吸引视觉注意的关键区域,该文提出一种融合相位一致性与2维主成分分析(2DPCA)的显著性方法。该方法不同于传统的利用相位谱的方式,而是提出采用相位一致性(PC)获取图像中重要的特征点和边缘信息,经快速漂移超像素优化后,融合局部和全局颜色对比度,生成低层特征显著图。接着提出利用2DPCA提取图像块的主成分后,计算主成分空间中图像块的局部和全局可区分性,得到模式显著图。最后,通过空间离散度度量分配合适的权重,使两者融合,提取显著性区域。在两种人眼跟踪数据库上与5种经典算法的实验对