论文部分内容阅读
支撑向量数据域描述(SVDD)是一种已经得到了广泛应用的核方法,但是其在构建超球时没有充分考虑数据分布信息。针对此问题,首先等价改写了SVDD算法优化问题,然后重新定义了该优化问题中的距离定义形式,进而提出了最小方差支撑向量数据域描述(MVSVDD)算法。该算法充分考虑数据的分布信息。实验结果表明,相对于传统SVDD算法,MVSVDD在泛化能力上得到了较为明显的提高,体现出了更好的描述数据域的能力。