论文部分内容阅读
β-PbO2 electrodes were prepared by electro-deposition and characterized by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and linear sweep voltammetry. We confirmed pure β-PbO2 crystals were on the electrode and it had a high oxygen evolution potential. The photoactivity and photoelectrochemical (PEC) properties of the β-PbO2 electrode were investigated under visible light irradiation (λ> 420 nm) for the decolorization of Methylene Blue. Pseudo first-order kinetics parameter (Kapp) for dye decolorization using the β-PbO2 electrode achieved 6.71×10-4 min-1 under visible light irradiation, which indicated its excellent visible light-induced photoactivity. The Kapp of the PEC process was as much as 1.41×l0-3 min-1 and was 1.71 times that of visible light irradiation or electrolysis even in the presence of the β-PbO2 electrode. A significant synergetic effect was observed in the PEC system. We also employed TiO2 modified β-PbO2 electrodes in this test, which revealed that the TiO2 immobilized on the β-PbO2 electrode inhibited the visible light-induced PEC efficiency despite the amount of TiO2 used for electrode preparation. The β-PbO2 electrode was also superior to the dimensionally stable anode (Ti/Ru0.3Ti0.7O2) in visible light-induced photoactivity and PEC efficiency.