论文部分内容阅读
目的:探讨超声人工智能联合美国放射学会甲状腺影像与报告系统(TI-RADS)分类在甲状腺结节良恶性鉴别诊断中的价值。方法:回顾性分析860例(共920个结节)行甲状腺手术的患者,术前均行超声检查,并与术后组织病理学结果对照,比较人工智能、TI-RADS分类及两者联合诊断的效能,采用Kappa检验分析不同诊断方式的一致性。结果:人工智能、TI-RADS及联合检查诊断甲状腺恶性结节的准确率分别为78.80%(725/920)、80.98%(745/920)及85.00%(782/920);敏感度76.36%(