论文部分内容阅读
应用图像处理和模式识别技术,分析高速线阵扫描相机采集的钢轨数字图像,提出鲁棒实时的钢轨表面擦伤检测算法。这种算法首先分析采集图像在垂直方向的投影曲线,提取准确钢轨图像;之后,借鉴人类视觉对比度感知机理,将钢轨灰度图转换为灰度对比图,并基于最大熵原理进行二值化处理,分割出可疑擦伤区域;然后根据经验知识判定钢轨表而的可疑擦伤。实验验证表明:新算法的检测性能高,平均准确率为90.7%,平均漏检率为3.95%;检测速度快,平均检测时间不超过40ms。