论文部分内容阅读
为了提高农田土壤湿度预测的效果,采用神经网络灰色模型。首先灰色模型对农田土壤湿度数据建模,神经网络对误差进行校正;然后神经网络灰色模型考虑湿度数据之间的关联度,只对关联度值较大的单个预测模型进行组合预测;最后给出了算法流程。实验结果表明,随着农田土壤深度的增加,湿度数据预测值的相对误差以及波动性都在增加;多模型对比实验显示:对垂直深度70 cm和80 cm的土壤湿度预测值接近真实值,剩余预测偏差指标最小值为2.69、平均值为2.75,模型判定系数为0.98,结果优于其他预测模型指标。