论文部分内容阅读
对短时交通流进行预测、诱导和控制是智能交通控制系统的重要研究内容。由于对短时交通流进行混沌特性识别时,存在实时性与样本数量之间的矛盾。因此,本文基于混沌时间序列分析理论,提出了一种快速计算短时交通流时间序列最大Lyapunov指数的小数据量方法,用于识别短时交通流中是否存在混沌特性。该方法首先将短时交通流时间序列在相空间中进行重构,以充分提取短时交通流中的相关信息。并结合庞卡来截面法对识别结果进行了验证。从而为对短时交通流进行分析、预测和控制时所采用的相应方法提供了可靠的理论依据。对实测短时交通流行为进行