论文部分内容阅读
针对现有的人像分割算法大多忽略移动设备的硬件限制,盲目追求效果,以致无法满足移动端对于分割速度要求的问题,提出了一种可在移动设备上高效运行的人像分割网络。首先,基于编码器-解码器的轻量级U型架构来构建网络;其次,为了克服全卷积网络(FCN)受制于较小的感受域,无法充分捕获长距离信息的缺陷,引入期望最大化注意力块(EMAU)置于编码器之后、解码器之前;然后,在训练阶段添加多层边界辅助损失,有助于提高人物边界轮廓的准确度;最后,对模型进行量化和压缩。在Veer数据集上将所提网络与PortraitFCN+