论文部分内容阅读
对简单连通图G(V,E),存在一个正整数k,和映射f:V(G)∪E(G)→{1,2,…,k},使得对uv∈E(G),有f(u)≠f(uv),f(v)≠f(uv),且C(u)≠C(v),则称f是图G的邻点可区别VE-全染色,而χvate(G)=min{k|k-AVD-VETC},称为G的邻点可区别VE-全色数,其中色集合C(u)={f(u)}∪{f(uv)|uv∈E(G)}.给出圈的倍图D(Cm)和扇的倍图D(Fm)的邻点可区别VE-边全色数.