论文部分内容阅读
Objective To investigate the role of poly-lactic acid and agarose gelatin in promoting the functional recovery of the injured spinal cord. Methods Poly-lactic acid (PLA) or agarose was embedded in the space between two stumps of the hemisectioned spinal cord. Immunohistochemistry was used to show astroglia proliferation and the infiltration of RhoA-positive cells. Locomotor activity recovery was evaluated by testing the function of hindlimbs. Results Astroglias and RhoA labeled non-neuronal cells accumulated in the area adjacent to the implant, while the number of RhoA-positive cells was decreased dramatically in the absence of implant. Animals implanted with agarose gelatin recovered more quickly than those with PLA, concomitant with a higher survival rate of the neurons. Conclusion Both PLA and agarose gelatin benefited the recovery of spinal cord after injury by providing a scaffold for astroglia processes. Modulation of the rigidity, pore size and inner structure of PLA and agarose gelatin might make these biodegradable materials more effective in the regeneration of the central nervous system (CNS).