论文部分内容阅读
高考数学试题中,选择题注重多个知识点的小型综合,渗透各种数学思想和方法,体现以考查“三基”为重点的导向。能否在选择题上获取高分,对高考数学成绩影响重大。解答选择题的基本要求是四个字——准确、迅速。
选择题主要考查基础知识的理解、基本技能的熟练、基本计算的准确、基本方法的运用、考虑问题的严谨与解题速度的快捷等方面。解答选择题的基本策略是:充分利用题设和选项两方面提供的信息作出判断。一般说来,能定性判断的,就不再使用复杂的定量计算;能使用特殊值判断的,就不必采用常规解法;能使用间接法解的,就不必采用直接法解;对于明显可以否定的选择应及早排除,以缩小选择的范围;对于具有多种解题思路的,宜选最简解法等。解题时应仔细审题、深入分析、正确推演、谨防疏漏;初选后认真检验,确保准确。
解数学选择题的常用方法,主要分为直接法和间接法两大类。直接法是解答选择题最基本、最常用的方法,但高考的题量较大,如果所有选择题都用直接法解答,不但时间不允许,甚至有些题目根本无法解答。因此,我们还要掌握一些特殊的解答选择题的方法。
1. 直接法
直接从题设条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密的推理和准确的运算,从而得出正确的结论,然后对照题目所给出的选项“对号入座”作出相应的选择。涉及概念、性质的辨析或运算较简单的题目常用直接法。
例1. 若sin2x>cos2x,则x的取值范围是()
A. {x|2k?仔- <x<2k?仔+ ,k∈Z}
B. {x|2k?仔+ <x<2k?仔+ ,k∈Z}
C. {x|k?仔- <x<k?仔+ ,k∈Z}
D. {x|k?仔+ <x<k?仔+ ,k∈Z}
解:(直接法)由sin2x>cos2x得cos2x-sin2x<0,即cos2x<0,所以: +k?仔<x< +k?仔,故选D。
另解:数形结合法:由已知得|sinx|>|cosx|,画出y=|sinx|和y=|cosx|的图象,从图象中可知选D。
直接法是解答选择题最常用的基本方法,低档选择题可用此法迅速求解。直接法适用的范围很广,只要运算正确必能得出正确的答案。提高直接法解选择题的能力,准确地把握中档题目的“个性”,用简便方法巧解选择题,应建立在扎实掌握“三基”的基础上,否则一味求快则会快中出错。
2. 特例法
用特殊值(特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确的判断。常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等。
例2. 如果n是正偶数,则C0n+C2n+…+Cn-2n+Cnn=
()
A. 2n B. 2n-1
C. 2n-2 D. (n-1)2n-1
解:(特值法)当n=2时,代入得C02+C22=2,排除答案A、C;当n=4时,代入得C04+C24+C44=8,排除答案D。所以选B。
另解:(直接法)由二项展开式系数的性质有C0n+C2n+……+Cn-2n+Cnn=2n-1,故选B。
例3. 椭圆 + =1上有两点A、B,O是椭圆的中心,若OA⊥OB,|OA|=m,|OB|=n则 + 等于
()
A. B.
C. D.
解:(特殊位置法)当A点为一短轴端点,B为一长轴端点时,|OA|=b,|OB|=a则 + = ,所以选D,如果用直接方法计算量会非常大。
当正确的选择对象在题设普遍条件下都成立的情况下,用特殊值(取得越简单越好)进行探求,从而清晰、快捷地得到正确答案,即通过对特殊情况的研究来判断一般规律,是解答本类选择题的最佳策略。近几年高考选择题中可用或结合特例法解答的约占30%左右。
3. 筛选法
从题设条件出发,运用定理、性质、公式推演,根据“四选一”的指令,逐步剔除干扰项,从而得出正确的判断。
例4. 已知y=loga(2-ax)在[0,1]上是x的减函数,则a的取值范围是()
A. (0,1) B. (1,2)
C. (0,2) D. [2,+∞)
解:∵ 2-ax在[0,1]上是减函数,所以a>1,排除答案A、C;若a=2,由2-ax>0得x<1,这与x∈[0,1]不符合,排除答案D。所以选B。
例5. 过抛物线y2=4x的焦点,作直线与此抛物线相交于两点P和Q,那么线段PQ中点的轨迹方程是()
A. y2=2x-1 B. y2=2x-2
C. y2=-2x+1 D. y2=-2x+2
解:(筛选法)由已知可知轨迹曲线的焦点为(1,0),开口向右,由此排除答案A、C、D,所以选B。
另解:(直接法)设过焦点的直线y=k(x-1),则y=k(x-1)y2=4x,消y得:k2x2-2(k2+2)x+k2=0,中点坐标为x= = y=k( -1)= ,消k得y2=2x-2,故选B。
筛选法适用于定性型或不易直接求解的选择题。当题目中的条件多于一个时,先根据某些条件在选项中找出明显与之矛盾的予以否定,再根据另一些条件在缩小的选项范围内找出矛盾,这样逐步筛选,直到得出正确的选择。它与特例法、图解法等结合使用是解选择题的常用方法,近几年高考选择题中约占40%。
4. 代入验证法
将各个选项逐一代入题设进行检验,从而获得正确的判断。即将各选项分别作为条件,去验证命题,能使命题成立的选项就是应选的答案。
例6. 函数y=sin(2x+ )的图象的一条对称轴的方程是()
A. x=- B. x=-
C. x= D. x=
解:(代入法)把选项逐次代入,当x=-时,y=-1,可见x=-是对称轴,又因为统一前提规定“只有一项是符合要求的”,故选A。
另解:(直接法) ∵函数y=sin(2x+ )的图象的对称轴方程为2x+ =k?仔+ ,即x= -?仔,当k=1时,x=-,选A。
代入法适用于题设复杂、结论简单的选择题。若能据题意确定代入顺序,则能较大提高解题速度。
5. 图解法
据题设条件作出所研究问题的曲线或有关图形,借助几何图形的直观性作出正确的判断。习惯上也叫数形结合法。
例7. 在(0,2?仔)内,使sinx>cosx成立的x的取值范围是()
A. ( , )∪(?仔, ) B. ( ,?仔)
C. ( ,?仔)∪( , ) D. ( , )
解:(图解法)在同一直角坐标系中分别作出y=sinx与y=cosx的图象,便可观察选D。
另解:(直接法)由sinx>cosx得sin(x- )>0,即2k?仔<x- <2k?仔+?仔,取k=0即知选D。
例8. 设函数f(x)=2-x-1x≤0 x>0,若f(x0)>1,则x0的取值范围是()
A. (-1,1) B. (-∞,-2)∪(0,+∞)
C. (-1,+∞) D. (-∞,-1)∪(1,+∞)
解:(图解法)在同一直角坐标系中,作出函数y=f(x)的图象和直线y=1,它们相交于(-1,1)和(1,1)两点,由f(x0)>1,得x0<-1或x0>1,故应选D。
严格地说,图解法并非属于选择题解题思路范畴,而是一种数形结合的解题策略。但它在解有关选择题时非常简便有效。 数形结合,借助几何图形的直观性,迅速作正确的判断是高考考查的重点之一。历年高考选择题直接与图形有关或可以用数形结合思想求解的题目约占50%左右。
其它还有割补法、极限法、估值法等等。这些方法对于特定的题型可以省去很多推导过程和比较复杂的计算,节省了时间,从而显得快捷。
总之,解答选择题既要看到:各类常规题的解题思想原则上都可以指导选择题的解答,更应该充分挖掘题目的“个性”,寻求简便解法,充分利用选项的作用,迅速地作出正确的选择。这样不但可以迅速、准确地获取正确答案,还可以提高解题速度,为后续解题节省时间。
注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文
选择题主要考查基础知识的理解、基本技能的熟练、基本计算的准确、基本方法的运用、考虑问题的严谨与解题速度的快捷等方面。解答选择题的基本策略是:充分利用题设和选项两方面提供的信息作出判断。一般说来,能定性判断的,就不再使用复杂的定量计算;能使用特殊值判断的,就不必采用常规解法;能使用间接法解的,就不必采用直接法解;对于明显可以否定的选择应及早排除,以缩小选择的范围;对于具有多种解题思路的,宜选最简解法等。解题时应仔细审题、深入分析、正确推演、谨防疏漏;初选后认真检验,确保准确。
解数学选择题的常用方法,主要分为直接法和间接法两大类。直接法是解答选择题最基本、最常用的方法,但高考的题量较大,如果所有选择题都用直接法解答,不但时间不允许,甚至有些题目根本无法解答。因此,我们还要掌握一些特殊的解答选择题的方法。
1. 直接法
直接从题设条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密的推理和准确的运算,从而得出正确的结论,然后对照题目所给出的选项“对号入座”作出相应的选择。涉及概念、性质的辨析或运算较简单的题目常用直接法。
例1. 若sin2x>cos2x,则x的取值范围是()
A. {x|2k?仔- <x<2k?仔+ ,k∈Z}
B. {x|2k?仔+ <x<2k?仔+ ,k∈Z}
C. {x|k?仔- <x<k?仔+ ,k∈Z}
D. {x|k?仔+ <x<k?仔+ ,k∈Z}
解:(直接法)由sin2x>cos2x得cos2x-sin2x<0,即cos2x<0,所以: +k?仔<x< +k?仔,故选D。
另解:数形结合法:由已知得|sinx|>|cosx|,画出y=|sinx|和y=|cosx|的图象,从图象中可知选D。
直接法是解答选择题最常用的基本方法,低档选择题可用此法迅速求解。直接法适用的范围很广,只要运算正确必能得出正确的答案。提高直接法解选择题的能力,准确地把握中档题目的“个性”,用简便方法巧解选择题,应建立在扎实掌握“三基”的基础上,否则一味求快则会快中出错。
2. 特例法
用特殊值(特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确的判断。常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等。
例2. 如果n是正偶数,则C0n+C2n+…+Cn-2n+Cnn=
()
A. 2n B. 2n-1
C. 2n-2 D. (n-1)2n-1
解:(特值法)当n=2时,代入得C02+C22=2,排除答案A、C;当n=4时,代入得C04+C24+C44=8,排除答案D。所以选B。
另解:(直接法)由二项展开式系数的性质有C0n+C2n+……+Cn-2n+Cnn=2n-1,故选B。
例3. 椭圆 + =1上有两点A、B,O是椭圆的中心,若OA⊥OB,|OA|=m,|OB|=n则 + 等于
()
A. B.
C. D.
解:(特殊位置法)当A点为一短轴端点,B为一长轴端点时,|OA|=b,|OB|=a则 + = ,所以选D,如果用直接方法计算量会非常大。
当正确的选择对象在题设普遍条件下都成立的情况下,用特殊值(取得越简单越好)进行探求,从而清晰、快捷地得到正确答案,即通过对特殊情况的研究来判断一般规律,是解答本类选择题的最佳策略。近几年高考选择题中可用或结合特例法解答的约占30%左右。
3. 筛选法
从题设条件出发,运用定理、性质、公式推演,根据“四选一”的指令,逐步剔除干扰项,从而得出正确的判断。
例4. 已知y=loga(2-ax)在[0,1]上是x的减函数,则a的取值范围是()
A. (0,1) B. (1,2)
C. (0,2) D. [2,+∞)
解:∵ 2-ax在[0,1]上是减函数,所以a>1,排除答案A、C;若a=2,由2-ax>0得x<1,这与x∈[0,1]不符合,排除答案D。所以选B。
例5. 过抛物线y2=4x的焦点,作直线与此抛物线相交于两点P和Q,那么线段PQ中点的轨迹方程是()
A. y2=2x-1 B. y2=2x-2
C. y2=-2x+1 D. y2=-2x+2
解:(筛选法)由已知可知轨迹曲线的焦点为(1,0),开口向右,由此排除答案A、C、D,所以选B。
另解:(直接法)设过焦点的直线y=k(x-1),则y=k(x-1)y2=4x,消y得:k2x2-2(k2+2)x+k2=0,中点坐标为x= = y=k( -1)= ,消k得y2=2x-2,故选B。
筛选法适用于定性型或不易直接求解的选择题。当题目中的条件多于一个时,先根据某些条件在选项中找出明显与之矛盾的予以否定,再根据另一些条件在缩小的选项范围内找出矛盾,这样逐步筛选,直到得出正确的选择。它与特例法、图解法等结合使用是解选择题的常用方法,近几年高考选择题中约占40%。
4. 代入验证法
将各个选项逐一代入题设进行检验,从而获得正确的判断。即将各选项分别作为条件,去验证命题,能使命题成立的选项就是应选的答案。
例6. 函数y=sin(2x+ )的图象的一条对称轴的方程是()
A. x=- B. x=-
C. x= D. x=
解:(代入法)把选项逐次代入,当x=-时,y=-1,可见x=-是对称轴,又因为统一前提规定“只有一项是符合要求的”,故选A。
另解:(直接法) ∵函数y=sin(2x+ )的图象的对称轴方程为2x+ =k?仔+ ,即x= -?仔,当k=1时,x=-,选A。
代入法适用于题设复杂、结论简单的选择题。若能据题意确定代入顺序,则能较大提高解题速度。
5. 图解法
据题设条件作出所研究问题的曲线或有关图形,借助几何图形的直观性作出正确的判断。习惯上也叫数形结合法。
例7. 在(0,2?仔)内,使sinx>cosx成立的x的取值范围是()
A. ( , )∪(?仔, ) B. ( ,?仔)
C. ( ,?仔)∪( , ) D. ( , )
解:(图解法)在同一直角坐标系中分别作出y=sinx与y=cosx的图象,便可观察选D。
另解:(直接法)由sinx>cosx得sin(x- )>0,即2k?仔<x- <2k?仔+?仔,取k=0即知选D。
例8. 设函数f(x)=2-x-1x≤0 x>0,若f(x0)>1,则x0的取值范围是()
A. (-1,1) B. (-∞,-2)∪(0,+∞)
C. (-1,+∞) D. (-∞,-1)∪(1,+∞)
解:(图解法)在同一直角坐标系中,作出函数y=f(x)的图象和直线y=1,它们相交于(-1,1)和(1,1)两点,由f(x0)>1,得x0<-1或x0>1,故应选D。
严格地说,图解法并非属于选择题解题思路范畴,而是一种数形结合的解题策略。但它在解有关选择题时非常简便有效。 数形结合,借助几何图形的直观性,迅速作正确的判断是高考考查的重点之一。历年高考选择题直接与图形有关或可以用数形结合思想求解的题目约占50%左右。
其它还有割补法、极限法、估值法等等。这些方法对于特定的题型可以省去很多推导过程和比较复杂的计算,节省了时间,从而显得快捷。
总之,解答选择题既要看到:各类常规题的解题思想原则上都可以指导选择题的解答,更应该充分挖掘题目的“个性”,寻求简便解法,充分利用选项的作用,迅速地作出正确的选择。这样不但可以迅速、准确地获取正确答案,还可以提高解题速度,为后续解题节省时间。
注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文