论文部分内容阅读
针对现有卷积神经网络(convolutional neural network,CNN)与长短时记忆网络(long short-term memory,LSTM)堆叠的寿命预测方法忽略低层次信息的问题,引入多尺度技术,提出一种多尺度卷积长短时记忆网络模型(multi-scale CNN-LSTM,MSCNN-LSTM)。将CNN的输出由单一尺度转换为多尺度,以充分学习CNN模块提取到的不同层次退化特征。首先采用小波变换获取退化信号的时频信息,并根据初始时刻标准差划分健康阶段;而后利用退化阶段监测数据训练所