论文部分内容阅读
为更全面、准确地评估10kV配电网线损水平,提出了一种基于粒子群算法(PSO)优化BP神经网络(BPNN)的较为准确有效的10kV配电网理论线损预测方法。首先筛选和构建5个电气特征指标描述10kV配电网结构和运行状态;其次采用惯性因子和学习因子动态调整的粒子群算法,全局搜索BP神经网络的权值和阈值来构建PSO-BPNN线损评估模型;通过对训练样本集的学习,拟合电气特征指标与线损之间的非线性关系,进而对测试样本集线损进行预测。最后应用某地区10kV配电网的实际样本数据验证了所提方法的有效性与合理性。