论文部分内容阅读
人工蜂群算法具有较强的探索能力,但是开采能力差、搜索精度低、后期收敛速度慢。针对以上问题,本文提出一种基于混沌机制的人工蜂群算法,在搜索方程中引入历史平均最优解,避免探索和开采能力的失衡;迭代后期,若种群陷入局部极值,采用混沌序列对种群进行变异,以增强算法的开采能力和求解的质量,保持种群的多样性。经过函数测试结果表明,改进后的算法在求解速度和精度上均优于基本ABC算法和其他改进算法。