论文部分内容阅读
采用小波网络方法,通过对矿井提升机钢丝绳磨损度、空动时间、衬垫磨损寿命、闸瓦间隙、残压、制动盘偏摆度等关键特征参数的时间序列预测,实现了其特征参数的故障预报.由于小波网络比一般神经网络具有更多的自由度,从而使其具有更灵活有效的函数逼近能力.小波神经元的良好局部特性和多分辨率学习实现了与信号的良好匹配,使得小波网络有更强的自适应能力、更快的收敛速度和更高的预报精度.仿真和实验结果表明,预报精度满足要求.